Coincident elevation of cAMP and calcium influx by PACAP-27 synergistically regulates vasoactive intestinal polypeptide gene transcription through a novel PKA-independent signaling pathway.
نویسندگان
چکیده
Pituitary adenylate cyclase-activating polypeptide (PACAP) causes calcium influx, intracellular calcium release, and elevation of cAMP in chromaffin cells. Calcium influx is required for PACAP-stimulated secretion of catecholamines and neuropeptides. The role of cAMP elevation in the action of PACAP at either sympathetic or adrenomedullary synapses, however, is unknown. Here, we show that PACAP-27-induced calcium influx through voltage-sensitive calcium channels (VSCCs), together with elevation of intracellular cAMP, was sufficient to stimulate vasoactive intestinal polypeptide (VIP) biosynthesis at least 40-fold. Combined treatment of chromaffin cells with 40 mm KCl, which elevates intracellular calcium, and 25 micrometer forskolin, which elevates intracellular cAMP, caused an increase in VIP peptide and mRNA much greater than that elicited by either agent alone, and comparable to the increase caused by 10-100 nm PACAP-27. Elevation of VIP mRNA by either KCl plus forskolin, or PACAP, (1) was independent of new protein synthesis, (2) was blocked by inhibition of calcium influx through voltage-sensitive calcium channels, (3) was calcineurin dependent, and (4) was dependent on MAP kinase activation but not activation of protein kinase A. The degree of activation of two different second-messenger pathways, calcium influx and cAMP elevation, appears to determine the magnitude of transcriptional activation of the VIP gene in chromaffin cells. Maximal stimulation of VIP biosynthesis by PACAP appears to require the coincident activation of both of these pathways.
منابع مشابه
Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates endozepine release from cultured rat astrocytes via a PKA-dependent mechanism.
Astroglial cells synthesize and release endozepines, neuropeptides that are related to the octadecaneuropeptide ODN. Glial cells also express PACAP/VIP receptors. We have investigated the possible effect of PACAP on the release of ODN-like immunoreactivity (ODN-LI) by cultured rat astrocytes. Administration of PACAP27 and PACAP38 induced a concentration-dependent increase in secretion of ODN-LI...
متن کاملA cAMP-dependent, protein kinase A-independent signaling pathway mediating neuritogenesis through Egr1 in PC12 cells.
The neurotrophic peptide PACAP (pituitary adenylate cyclase-activating polypeptide) elevates cAMP in PC12 cells. Forskolin and dibutyryl cAMP mimic PACAP's neuritogenic and cell morphological effects, suggesting that they are driven by cAMP. Comparison of microarray expression profiles after exposure of PC12 cells to either forskolin, dibutyryl cAMP, or PACAP revealed a small group of cAMP-depe...
متن کاملPituitary adenylate cyclase-activating polypeptide stimulates secretoneurin release and secretogranin II gene transcription in bovine adrenochromaffin cells through multiple signaling pathways and increased binding of pre-existing activator protein-1-like transcription factors.
Secretoneurin (SN) is a novel bioactive peptide that derives from the neuroendocrine protein secretogranin II (SgII) by proteolytic processing and participates in neuro-immune communication. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP-38) dose-dependently stimulates (EC(50) approximately 3 nM) SN release (up to 4-fold) and SgII gene expression (up to 60-fold) in c...
متن کاملSignaling through the neuropeptide GPCR PAC₁ induces neuritogenesis via a single linear cAMP- and ERK-dependent pathway using a novel cAMP sensor.
Both cAMP and ERK are necessary for neuroendocrine cell neuritogenesis, and pituitary adenylate cyclase-activating polypeptide (PACAP) activates each. It is important to know whether cAMP and ERK are arranged in a novel, linear pathway or in two parallel pathways using known signaling mechanisms. Native cellular responses [cAMP elevation, ERK phosphorylation, cAMP responsive element binding (CR...
متن کاملVasoactive intestinal peptide stimulates neuropeptide Y gene expression and causes neurite extension in PC12 cells through independent mechanisms.
Vasoactive intestinal peptide (VIP) is widely recognized as a regulator of tyrosine hydroxylase via a mechanism of trans-synaptic activation. Subsets of adrenal medullary cells and postganglionic sympathetic nerves coexpress the peptide neurotransmitter neuropeptide Y (NPY) with catecholamines. Using PC12 cells transiently expressing a fusion gene in which the bacterial enzyme chloramphenicol a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 13 شماره
صفحات -
تاریخ انتشار 2002